Surviving SPSS

Debby Kermer
Data Services Research Consultant
http://dataservices.gmu.edu/
Mason Data Services

http://dataservices.gmu.edu

Wendy Mann
Joy Suh
Debby Kermer

datahelp@gmu.edu

Finding & Archiving Data, Data Management Plans

Qualitative & Quantitative Methods, Analysis, & Software

Geospatial Analysis and Mapping
Why SPSS?

- Easy to get started
- Optimized for the behavioral and social sciences
- Easy to maintain weighting for sampled surveys
- Best for working with missing values
<table>
<thead>
<tr>
<th>Statistical Software</th>
<th>SPSS</th>
<th>STATA</th>
<th>SAS</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to start, limited capability</td>
<td>Easy syntax, highly extensible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best for those with infrequent and/or minimal needs</td>
<td>Best for academics doing cutting-edge research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard to learn, highly capable</td>
<td>Hard to learn, highly extensible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best for managing huge and/or complex datasets</td>
<td>Best for those who program and know what they are doing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
http://dataservices.gmu.edu/software/spss
The **Data Window** has two views, each with important information about your data.

Use the tabs at the bottom to **switch views**. Or, double-click the variable #/name in the blue row/column header to keep your place.

Columns in both Views can be dragged wider or narrower, just like in Excel.

It is important to **label** the numeric values of categorical variables. In Data View, you can see either by clicking →

Visit **Edit | Options** to specify if labels or names/values are displayed in Variable Lists and Output, and to set the default decimals.

The **Output Window** stores a log of what you did and tables and graphs generated.

The log is the **syntax** SPSS actually uses to create the results. Double-click on the log to select and copy the text to use later.

Use the **Outline** to skip to different sections. Clean up by selecting items and pressing **Delete** on the keyboard.

Double-click any item to edit or select text. Choose a Pivot Table **TableLook** in Options to alter the font and borders for all tables.

To save the output as a Word or Excel file, choose **File | Export.** If **Objects to Export** is “All”, extra diagnostic info is included.

The **Syntax Window** stores SPSS code so you can examine, fix, or redo prior steps, or allow others to replicate your analysis.

Instead of clicking Ok, choose to **PASTE** the Syntax into the file for you to Run yourself.

Syntax is just text, so you can **edit or copy** it to change variables or options. The **BLUE** is for commands, which end with a period.

To **Run** the code, highlight the command(s) you want to do, then click the green arrow.

* Comment between an asterisk and period, or add explanation anywhere /* no period */

****** Be creative for headings ******
Open the Dataset

Click the Workshop Files Icon:
Or, go to the "W" drive.

Choose SPSS Workshop Files

Open “PST 11-05c.sav”
 Double-Click or File | Open... (if SPSS is open)
Data View

![Data View in IBM SPSS Statistics Data Editor](image)

<table>
<thead>
<tr>
<th>psaid</th>
<th>respd</th>
<th>weight</th>
<th>int_date</th>
<th>lang</th>
<th>area</th>
<th>state</th>
<th>cregion</th>
<th>msa</th>
<th>fips</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.02</td>
<td>101705</td>
<td>Spanish</td>
<td>727</td>
<td>Florida</td>
<td>SOUTH</td>
<td>45300</td>
<td>12103</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.79</td>
<td>100605</td>
<td>English</td>
<td>386</td>
<td>Florida</td>
<td>SOUTH</td>
<td>19660</td>
<td>12127</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2.56</td>
<td>101705</td>
<td>Spanish</td>
<td>770</td>
<td>Georgia</td>
<td>SOUTH</td>
<td>12060</td>
<td>13067</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2.36</td>
<td>101705</td>
<td>Spanish</td>
<td>718</td>
<td>New York</td>
<td>NORTHEA...</td>
<td>36620</td>
<td>36047</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2.69</td>
<td>100505</td>
<td>English</td>
<td>215</td>
<td>Pennsylvania</td>
<td>NORTHEA...</td>
<td>37980</td>
<td>42101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2.13</td>
<td>101705</td>
<td>Spanish</td>
<td>786</td>
<td>Florida</td>
<td>SOUTH</td>
<td>33100</td>
<td>12086</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1.29</td>
<td>100505</td>
<td>English</td>
<td>336</td>
<td>North Carolina</td>
<td>SOUTH</td>
<td>49180</td>
<td>37067</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3.15</td>
<td>101705</td>
<td>Spanish</td>
<td>716</td>
<td>New York</td>
<td>NORTHEA...</td>
<td>0</td>
<td>36013</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>2.33</td>
<td>100905</td>
<td>English</td>
<td>704</td>
<td>North Carolina</td>
<td>SOUTH</td>
<td>16740</td>
<td>37119</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>2.23</td>
<td>101705</td>
<td>Spanish</td>
<td>973</td>
<td>New Jersey</td>
<td>NORTHEA...</td>
<td>35620</td>
<td>34031</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1.02</td>
<td>101705</td>
<td>Spanish</td>
<td>816</td>
<td>Missouri</td>
<td>MIDWEST</td>
<td>28140</td>
<td>29096</td>
</tr>
</tbody>
</table>
Data View

Look at the Data Window

Confirm you are in Data View

In Data View:
- Variables are in columns
- Cases are in rows
Navigating Data View

Variables are in columns
Find variable q2
Make q2 wider

Cases are in rows
Determine the # of cases
(scroll down)
Values & Labels

Value = What is stored and analyzed; the "actual" value

Label = What is displayed; the characteristic or group

Value → Label
1 → “English”
2 → “Spanish”
Switching Views

#1: Click on the Tabs
 or

#2: Double-Click on the Blue Header area
 • Variable View
 • Data View

From Data View, double-click q2 to switch views
Variable View

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Width</th>
<th>Decimals</th>
<th>Label</th>
<th>Values</th>
<th>Missing</th>
<th>Columns</th>
<th>Align</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>praid</td>
<td>Numeric</td>
<td>4</td>
<td>0</td>
<td>Unique ID</td>
<td>None</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>2</td>
<td>respid</td>
<td>Numeric</td>
<td>8</td>
<td>0</td>
<td>Record</td>
<td>None</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>3</td>
<td>weight</td>
<td>Numeric</td>
<td>4</td>
<td>2</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>4</td>
<td>int_date</td>
<td>Numeric</td>
<td>6</td>
<td>0</td>
<td>Interview date</td>
<td>None</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>5</td>
<td>lang</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Language of Int...</td>
<td>(1, English)...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>6</td>
<td>area</td>
<td>Numeric</td>
<td>3</td>
<td>0</td>
<td>Area code</td>
<td>None</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>7</td>
<td>state</td>
<td>Numeric</td>
<td>2</td>
<td>0</td>
<td>State from FIPS</td>
<td>(1, Alabama...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>8</td>
<td>cregion</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Census region</td>
<td>(1, NORTH...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>9</td>
<td>msa</td>
<td>Numeric</td>
<td>5</td>
<td>0</td>
<td>MSA code</td>
<td>None</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>10</td>
<td>fips</td>
<td>Numeric</td>
<td>5</td>
<td>0</td>
<td>FIPS code</td>
<td>None</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>11</td>
<td>usr</td>
<td>String</td>
<td>1</td>
<td>0</td>
<td>Community typ...</td>
<td>(R, Rural...</td>
<td>None</td>
<td>8</td>
<td>Left</td>
</tr>
<tr>
<td>12</td>
<td>usr1</td>
<td>Numeric</td>
<td>8</td>
<td>0</td>
<td>Community typ...</td>
<td>(1, Urban)...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
</tr>
<tr>
<td>13</td>
<td>tz</td>
<td>String</td>
<td>1</td>
<td>0</td>
<td>Time zone</td>
<td>(C, Central)</td>
<td>None</td>
<td>8</td>
<td>Left</td>
</tr>
</tbody>
</table>
Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Width</th>
<th>Decimals</th>
<th>Label</th>
<th>Values</th>
<th>Missing</th>
<th>Columns</th>
<th>Align</th>
<th>Measure</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>usu</td>
<td>String</td>
<td>1</td>
<td>0</td>
<td>Community type - alpha</td>
<td>{R, Rural}...</td>
<td>None</td>
<td>8</td>
<td>Left</td>
<td>Nominal</td>
<td>Input</td>
</tr>
<tr>
<td>usu1</td>
<td>Numeric</td>
<td>8</td>
<td>0</td>
<td>Community type - numeric</td>
<td>{1, Urban}...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Scale</td>
<td>Input</td>
</tr>
<tr>
<td>tz</td>
<td>String</td>
<td>1</td>
<td>0</td>
<td>Time zone</td>
<td>{C, Central}...</td>
<td>None</td>
<td>8</td>
<td>Left</td>
<td>Nominal</td>
<td>Input</td>
</tr>
<tr>
<td>form</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Sample split</td>
<td>{1, Form 1}...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Ordinal</td>
<td>Input</td>
</tr>
<tr>
<td>sex</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Respondent’s sex</td>
<td>{1, Male}...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Ordinal</td>
<td>Input</td>
</tr>
<tr>
<td>a2</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Generally, how would you say</td>
<td>{1, Very happy}</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Ordinal</td>
<td>Input</td>
</tr>
</tbody>
</table>

Update:
- **Name** – "Nickname"
- **Label** – Display Label
- **Role** – Theoretical Role (only for new / fancy analyses)

Change sex *(15)* **to gender**

Change the Label for sex
Variable Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage & Analysis Type</td>
<td>Level of Measurement</td>
</tr>
<tr>
<td>Numeric</td>
<td>Scale = Interval or Ratio</td>
</tr>
<tr>
<td>String</td>
<td>Prevents incorrect analysis</td>
</tr>
</tbody>
</table>

Numeric = For numeric or categorical (label the values)

String = For essay text; only keeps text up to the **Width**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Width</th>
<th>Decimals</th>
<th>Label</th>
<th>Values</th>
<th>Missing</th>
<th>Columns</th>
<th>Align</th>
<th>Measure</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>usr</td>
<td>String</td>
<td>1</td>
<td>0</td>
<td>Community type - alpha</td>
<td>{R, Rural}...</td>
<td>None</td>
<td>8</td>
<td>Left</td>
<td>Nominal</td>
<td>Input</td>
</tr>
<tr>
<td>usr1</td>
<td>Numeric</td>
<td>8</td>
<td>0</td>
<td>Community type - numeric</td>
<td>{1, Urban}...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Scale</td>
<td>Input</td>
</tr>
<tr>
<td>tz</td>
<td>String</td>
<td>1</td>
<td>0</td>
<td>Time zone</td>
<td>{C, Central}...</td>
<td>None</td>
<td>8</td>
<td>Left</td>
<td>Nominal</td>
<td>Input</td>
</tr>
<tr>
<td>form</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Sample split</td>
<td>{1, Form 1}...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Ordinal</td>
<td>Input</td>
</tr>
<tr>
<td>sex</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Respondent's sex</td>
<td>{1, Male}...</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Ordinal</td>
<td>Input</td>
</tr>
<tr>
<td>q2</td>
<td>Numeric</td>
<td>1</td>
<td>0</td>
<td>Q2 Generally, how would you</td>
<td>{1, Very happy}</td>
<td>None</td>
<td>8</td>
<td>Right</td>
<td>Ordinal</td>
<td>Input</td>
</tr>
</tbody>
</table>
For state (7):

- Label 3 “Not used”
- Change District of Columbia to DC
- Remove Label for 3

NOTE: Use this method ONLY when entering your own data. It is not replicable.
Q.2

Q.2 Generally, how would you say things are these days in your life -- would you say that you are very happy, pretty happy, or not too happy?

1 = Very happy
2 = Pretty happy
3 = Not too happy
9 = Don’t know/Refused

Name: q2
Type: Numeric
Measure: Ordinal
Values:
1 = “Very happy”
2 = “Pretty happy”
3 = “Not too happy”
9 = “Don’t know/Refused”
Missing Values

System Missing
- *(a period)*

User Missing
- 7 = “N/A”
- 8 = “Don’t Know”
- 9 = “Refused”
User Missing Values

Add 9 as a User Missing value for q2

Add 7 & 9 as User Missing values for q3a

Copy User Missing values from q3a to all q3-series

Right Click and choose Copy

Select All the q3a cells

Right Click and choose Paste
Data View Display

Decimals – # of decimals shown (in output, too)

Column – Width of the column

Align – Justification of values in column

only affects how it looks, does not change the data
Analyze Menu
Descriptive Statistics

Analyse | Descriptive Statistics | Frequencies

How happy are people with their life? (q2)
Finding Variables

Find q2

Type name VERY FAST

Right Click to re-sort
Choosing Variables

Move q2 to the box then click OK

Click the arrow

or

Double-Click the name
Output Window / Viewer

Outline

Syntax

Click and press the Delete Key
q2 Q.2 Generally, how would you say things are these days in your life -- would you say that you are very happy, pretty happy, or not too happy?

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>1 Very happy</td>
<td>2108</td>
<td>34.1</td>
<td>34.5</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>2 Pretty happy</td>
<td>3097</td>
<td>50.1</td>
<td>50.7</td>
<td>85.2</td>
</tr>
<tr>
<td></td>
<td>3 Not too happy</td>
<td>901</td>
<td>14.6</td>
<td>14.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6105</td>
<td>98.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>9 Don’t know/Refused</td>
<td>82</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6188</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPSS Options

Edit | Options
Options: General

- Display names
- No scientific notation for small numbers in tables
- Raise viewer window
- Open syntax window at startup
Options: Output

- **Outline Labeling**
 - Varieties in item labels shown as:
 - **Names and Labels**
 - **Values and Labels**

- **One Click Descriptives**
 - Suppress tables with many categories
 - Maximum number of categories: 50
 - Include a chart in the output

- **Output Display**
 - Display method:
 - Model Viewer
 - Pivot tables and charts
 - Output display method applies to:
 - Generalized Linear Mixed Models
 - Nonparametric Tests

- **Pivot Table Labeling**
 - Varieties in item labels shown as:
 - **Names and Labels**
 - **Values and Labels**

- **Screen Reader Accessibility**
 - Read full row and column labels for each cell in pivot tables
 - Read only row or column labels that change when you move to a different cell
Goal

Is there a relationship between **happiness** and having **pets**?

<table>
<thead>
<tr>
<th>Happiness</th>
<th>q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Happy = 1 & 2</td>
</tr>
<tr>
<td>0</td>
<td>Not Happy = 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Have pets</th>
<th>q75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Has Pets = 1</td>
</tr>
<tr>
<td>0</td>
<td>No Pets = 2+</td>
</tr>
</tbody>
</table>

Use Edit | Go to Variable... as needed
Transform Menu

Working with Variables
Goal: Make an indicator (0/1) for people with pets

Transform | Compute Variable...

Target Variable:

has_pet

Numeric Expression:

q75 = 1
Goal: Recode q2 into is_happy: Happy vs Unhappy

Transform | Recode into Different Variables...

Data | Define Variable Properties...
Labeling with Syntax

Data | Define Variable Properties...

![Define Variable Properties window]

- Use this facility to label variable values and set other properties after scanning the data.
- Select the variables to scan. They should be categorical (nominal or ordinal) for best results. You can change the measurement level setting in the next panel.

Variables:
- givediff
- agegen3pt
- givedac
- agegen5pt
- havkids2
- gimme5
- givboth3
- m1stat2
- marrikd
- has_pet
- is_happy

Variables to Scan:
- usbrmn1b1
- religos1
- givediff
- givedac
- agegen3pt
- agegen5pt
- havkids2
- gimme5
- givboth3
- m1stat2
- marrikd
- has_pet
- is_happy

[Continue button highlighted]
Variable Properties

- **Label**: Has pet?
- **Type**: Numeric
- **Width**: 6
- **Decimals**: 0
- **Values**:
 - Value: 0, Label: No Pet
 - Value: 1, Label: Has a Pet
Add Labels

Variable Name:
has_pet
is_happy

Variable Label:
Has a Pet?
Happy?

Value Labels:
0 = No Pet
0 = Not Happy
1 = Has a Pet
1 = Happy
Run Syntax

Variable Name: has_pet

Variable Label: Has a Pet?

Value Labels:
0 = No Pet
1 = Has a Pet

Variable Name: is_happy

Variable Label: Happy?

Value Labels:
0 = Not Happy
1 = Happy
Crosstabulation Analysis
Crosstabs

Analyze | Descriptive Statistics | Crosstabs...
Among those **with no pet**, 84.6% report being generally happy

Among those who **have a pet**, 85.7% report being generally happy
Chi-Square

Analyze | Descriptive Statistics | Crosstabs...

[Image of software interface showing options for statistics and selecting chi-square]
Data Menu

Working with Cases
Selecting [a Subset of] Cases

Goal: Do analysis on only those who have a pet.

Data | Select Cases...

- Use filter variable: `has_pet`
- Filter out unselected cases
- Copy selected cases to a new dataset
- Delete unselected cases

Filtering:
- Ignored cases: 0 or missing value
- Included cases: every other value
Tables

Crosstabs: q76dog & is_happy

<table>
<thead>
<tr>
<th>q76dog Owns Dog - From Q76 * is_happy Happy? Crosstabulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_happy Happy?</td>
</tr>
<tr>
<td>q76dog Owns Dog - From Q76</td>
</tr>
<tr>
<td>0 No</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
</tr>
<tr>
<td>1 Yes</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
</tr>
</tbody>
</table>
Splitting a File for Comparison

Goal: Compare males and females with pets

Data | Split File...

- Turn off Grouping
- Add group as a factor for each analysis
- Do analysis for one group, then for the other

Choose **Compare groups**
Move **gender** to box
Guys with dogs are more likely to be happy.

Girls with dogs are less likely to be happy.

Examining Output

Redo Crosstabs: q76dog & is_happy

<table>
<thead>
<tr>
<th>gender Respondent's gender</th>
<th>is_happy Happy?</th>
<th>0 Not Happy</th>
<th>1 Happy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Male</td>
<td>q76dog Owns Dog - From Q76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 No</td>
<td>Count</td>
<td>80</td>
<td>290</td>
<td>470</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
<td>17.0%</td>
<td>83.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
<td>148</td>
<td>1015</td>
<td>1163</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
<td>12.7%</td>
<td>87.3%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>228</td>
<td>1405</td>
<td>1633</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
<td>14.0%</td>
<td>86.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>2 Female</td>
<td>q76dog Owns Dog - From Q76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 No</td>
<td>Count</td>
<td>76</td>
<td>519</td>
<td>595</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
<td>12.8%</td>
<td>87.2%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
<td>192</td>
<td>1057</td>
<td>1249</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
<td>15.4%</td>
<td>84.6%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>268</td>
<td>1576</td>
<td>1844</td>
</tr>
<tr>
<td>% within q76dog Owns Dog - From Q76</td>
<td>14.5%</td>
<td>85.5%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>
Status Bar

The Status Bar shows the status of:

- **Filter**
- **Split**
- **Weighting**

![Status Bar of IBM SPSS Statistics Data Editor](image)
Return to Normal

Turn off Grouping

Turn off Filtering
Finishing Up
Save Files

File | Save As...

Data File & Output File & Syntax File

To Exit, click “Yes”
Questions

dkermer@gmu.edu

http://dataservices.gmu.edu

http://dataservices.gmu.edu/software/spss/