Regression Equations

A linear regression with 1 predictor.

Equations:

Theory or Observed
\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i \]

Model or Prediction
\[\hat{y} = \beta_0 + \beta_1 x \]

The mean of \(y \) (\(\bar{y} \)) is the best guess for \(y \) when no other information (e.g., the value of \(x \)) is used to predict.

Model aka fitted values include the intercept (\(\beta_0 \) aka \(\alpha \)) and coefficients (\(\beta_1 \)) for each predictor variable (\(x \)).

Residuals (\(\epsilon_i \)) should represent random error. To check, create a scatterplot for predicted vs residual values. Across each predicted value, residuals should be unbiased (mean of 0) and homoscedastic (equal variance).

Sum of Squares (SS)

\[SSM = \sum (\hat{y}_i - \bar{y})^2 \quad \text{Explained Variation (also SS Explained)} \]
\[SSE = \sum (y_i - \hat{y}_i)^2 = \sum \epsilon_i^2 \quad \text{Unexplained Variation, Prediction Error} \]
\[SST = \sum (y_i - \bar{y})^2 \quad \text{Total Variation, \(SST = \sum \epsilon_i^2 \)} \]

Mean Squared (MS)

\[MS = \frac{SS}{df} \quad \text{SS divided by the degrees of freedom} \]
\[MSM = \frac{SSM}{p-1} \quad \text{Average Explained Variation per predictor} \]
\[MSE = \frac{SSE}{n-p} \quad \text{Unbiased Estimate of Residuals Variance} \]
\[MST = \frac{SST}{n-1} \quad \text{Unbiased Estimate of Total Variance} \]

\[F = \frac{MSM}{MSE} \quad \text{Test statistic for the null hypothesis (H0) that all coefficients (e.g., \(\beta_1 \)) equal zero} \]

\[SEE = \sqrt{MSE} \quad \text{Standard Deviation of the Residuals} \]

R-Squared (R²)

\[R^2 = r^2 = 1 - \left(\frac{SSE}{SST} \right) = \frac{SSM}{SST} \quad \text{where} \ r \ \text{is the correlation between observed and predicted \(y \)’s} \]

\[\text{Adj R}^2 = 1 - \left(\frac{MSE}{MST} \right) \quad \text{for multiple regression; penalizes for added predictors that do not decrease MSE} \]
Null Hypothesis Significance Testing

Test Statistics

Because the purpose of each test is different as are the types of values, each has a different way of calculating the test statistic.

Test Statistic \[\frac{\text{Signal}}{\text{Noise}} = \frac{\text{Explained Variation}}{\text{Unexplained Variation}} \]

- \(Z = \frac{\text{Difference Between Population and Sample Means}}{\text{Population Standard Error}} \) (1-Sample Z-Test)
- \(t = \frac{\text{Difference between Group Means}}{\text{Pooled Standard Error}} \) (Independent Samples t-Test)
- \(F = \frac{\text{MS Model}}{\text{MS Error}} \) (Regression) = \(\frac{\text{MS Between Groups}}{\text{MS Within Groups}} \) (ANOVA)
- \(X^2 = \frac{\sum (\text{Observed} - \text{Expected})^2}{\text{Expected}} \) (Chi-Square)

Critical Values

http://graphpad.com/support/faq/plotting-t-z-f-or-chi-square-distributions-with-prism/

Rejecting the Null Hypothesis

Before computers, Test Statistics and Critical Values were crucial because the exact p-value was very difficult to calculate by hand. Now, computers will give the exact p-value so these are less necessary.

Reject Null if

- **OLD SCHOOL** Test Statistic \(\geq \) Critical Value
- **COMPUTER ERA** p-value \(\leq \) alpha [level]

From your Data Decision Criteria