Categorical ↔ Categorical

Are members of X groups 1 or 2 more likely to be in Y groups A or B?

Significance:
Chi Square χ^2

Strength:
Cramer's V

Do (1) H.S. or (2) college students more likely to prefer (A) Math or (B) Science?

Bar Chart

Category 1
Category 2

Category A
Category B

Numeric → Categorical

Are higher/lower values of X more likely to be in Y groups A or B?

Significance:
Logistic Regression

Strength:
Odds Ratio

Is (X) age related to the likelihood of studying at the (A) library or (B) home?

Area Chart

% of Variable Y

Variable X

Category A
Category B

Categorical → Numeric

Do members of X groups 1 or 2 have higher/ lower values of Y overall?

Significance:
t-test / ANOVA

Strength:
Cohen's D

Do (1) Mason graduates and (2) UVA graduates get different (Y) numbers of job

Box Plot

Variable Y

Category 1
Category 2

Variable X

Numeric ↔ Numeric

Are higher/lower values of X associated with higher/lower values of Y?

Significance:
Correlation

Strength:
Pearson's r

Is the (X) number of class sessions attended related to (Y) scores on the final exam?

Scatter Plot

Variable Y

Variable X

© 2015 by Debby Kermer, Mason Library Data Services

This work is licensed under the Attribution-NonCommercial-ShareAlike International License: http://creativecommons.org/licenses/by-nc-sa/4.0/
Categorical ↔ Categorical

Compare or Examine Associations with Group Membership

Chi-Square (χ^2) examines a contingency table (or crosstabulation) of nominal variables (ideally 2-5 groups), comparing the frequencies expected if there were no relationship to actual / observed frequencies.

See also:

- **Binomial Test** for 1 Proportion (1 variable with 2 levels)
- **Fisher’s Exact** for 2x2 tables, allows cells having < 5 expected obs
- **McNemar’s** for repeated measures / paired samples
- **Kendall’s tau** for Ordinal variables
- **Kruskal Gamma** for Ordinal variables with many ties
- **Log-linear** for 3+ Nominal variables

Yates correction is used when cells have < 5 observed values

Numeric → Categorical

Understand or Predict Group Membership

Logistic Regression models the relationship between a Binary DV and one or more IVs. A linear combination of the values of all IVs produces a predicted likelihood (in log-odds) of being in one group over the other.

See also:

- **Multinomial / Ordinal Logistic Regression** for nominal / ordinal DVs with 3+ values
- **Linear Probability Model** name when using Linear Regression to predict probabilities (also a Binary DV)
- **Discriminant Functions Analysis (DFA)** for a linear combination of Gaussian variables that best discriminates among 3+ groups
- **Log-linear Analysis** for multiple nominal IVs only; better for testing interactions between the factors

Categorical → Numeric

Compare Group Means

Analysis of Variance (ANOVA) compares means from independent groups formed by 1+ Nominal IVs. If any IV has 3+ levels, post-hoc tests are used to test pairwise differences. *aka* Between Subjects ANOVA

See also:

- **t-Test** ANOVA for just 1 IV having only 2 groups
- **Z-Test** t-Test for known σ and/or large samples
- **Kruskal-Wallis H / Mann-Whitney U** ANOVA / t-Test for an Ordinal or Non-Parametric DV
- **Factorial ANOVA** name when testing interactions among 2+ IVs
- **MANCOVA** Multiple (2+) correlated DVs and a numeric Covariate
- **Within Subjects ANOVA/t-Test** Compare a change or difference in paired values; *aka* Repeated Measures, Dependent Samples

Numeric → Numeric

Understand or Predict Values

[Pearson’s] Correlation evaluates the strength of a *linear* association, or shared variance, between 2 numeric variables. For Non-Parametric or Ordinal variables, use Spearman’s [Rank-Order] Correlation.

See also:

- **[Linear] Regression** creates a linear combination/equation of the values of all IVs to produce a predicted value of the DV
- **General[ized] Linear Models** extension of Regression to allow for for non-normal distributions of the response variable or residuals
- **Hierarchical Linear Modeling (HLM)** when observations have variables for shared group characteristics (e.g., students within schools)

In Regression, nominal variables can be included as numeric IVs when expressed as multiple binary variables (through Dummy Coding).